Show simple item record

Authordc.contributor.authorEmery, Xavier es_CL
Admission datedc.date.accessioned2008-05-14T14:14:38Z
Available datedc.date.available2008-05-14T14:14:38Z
Publication datedc.date.issued2007es_CL
Cita de ítemdc.identifier.citationSTOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT Vol. 21 MAY 2007 4 391-403es_CL
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/124734
General notedc.descriptionPublicación ISIes_CL
Abstractdc.description.abstractIn the analysis of regionalized data, irregular sampling patterns are often responsible for large deviations (fluctuations) between the theoretical and sample semi-variograms. This article proposes a new semi-variogram estimator that is unbiased irrespective of the actual multivariate distribution of the data (provided an assumption of stationarity) and has the minimal variance under a given multivariate distribution model. Such an estimator considerably reduces fluctuations in the sample semi-variogram when the data are strongly correlated and clustered in space, and proves to be robust to a misspecification of the multivariate distribution model. The traditional and proposed semi-variogram estimators are compared through an application to a pollution dataset.es_CL
Lenguagedc.language.isoenes_CL
Keywordsdc.subjectspatial statisticses_CL
Area Temáticadc.subject.otherEngineering, Environmental; Engineering, Civil; Environmental Sciences; Statistics & Probability; Water Resourceses_CL
Títulodc.titleReducing fluctuations in the sample variogrames_CL
Document typedc.typeArtículo de revista


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record