Show simple item record

Authordc.contributor.authorBarra de la Guarda, Felipe 
Authordc.contributor.authorGilbert, Thomas es_CL
Authordc.contributor.authorRomo, Mauricio es_CL
Admission datedc.date.accessioned2008-12-10T09:42:06Z
Available datedc.date.available2008-12-10T09:42:06Z
Publication datedc.date.issued2006-02
Cita de ítemdc.identifier.citationPHYSICAL REVIEW E Volume: 73 Issue: 2 Article Number: 026211 Part: Part 2 Published: FEB 2006en
Identifierdc.identifier.issn1539-3755
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/124754
Abstractdc.description.abstractWe study the dynamics of classical particles in different classes of spatially extended self-similar systems, consisting of (i) a self-similar Lorentz billiard channel, (ii) a self-similar graph, and (iii) a master equation. In all three systems, the particles typically drift at constant velocity and spread ballistically. These transport properties are analyzed in terms of the spectral properties of the operator evolving the probability densities. For systems (i) and (ii), we explain the drift from the properties of the Pollicott-Ruelle resonance spectrum and corresponding eigenvectors.en
Lenguagedc.language.isoenen
Publisherdc.publisherAMERICAN PHYSICAL SOCen
Keywordsdc.subjectDYNAMIC-SYSTEMSen
Títulodc.titleDrift of particles in self-similar systems and its Liouvillian interpretationen
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record