Realization of a Choquet simplex as the set of invariant probability measures of a tiling system
Author | dc.contributor.author | Cortez, María Isabel | |
Admission date | dc.date.accessioned | 2009-03-25T10:33:41Z | |
Available date | dc.date.available | 2009-03-25T10:33:41Z | |
Publication date | dc.date.issued | 2006-10 | |
Cita de ítem | dc.identifier.citation | ERGODIC THEORY AND DYNAMICAL SYSTEMS Volume: 26 Pages: 1417-1441 Part: Part 5 Published: OCT 2006 | en |
Identifier | dc.identifier.issn | 0143-3857 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/124811 | |
Abstract | dc.description.abstract | In this paper we show that, for every Choquet simplex K and for every d > 1, there exists a Z(d)-Toeplitz system whose set of invariant probability measures is affine homeomorphic to K. Then, we conclude that K may be realized as the set of invariant probability measures of a tiling system (Omega(T), R-d). | en |
Lenguage | dc.language.iso | en | en |
Publisher | dc.publisher | CAMBRIDGE UNIV PRESS | en |
Keywords | dc.subject | TOEPLITZ FLOWS | en |
Título | dc.title | Realization of a Choquet simplex as the set of invariant probability measures of a tiling system | en |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas