Collapsing steady states of the Keller-Segel system
Author | dc.contributor.author | Pino Manresa, Manuel del | |
Author | dc.contributor.author | Wei, Juncheng | es_CL |
Admission date | dc.date.accessioned | 2009-03-26T17:06:37Z | |
Available date | dc.date.available | 2009-03-26T17:06:37Z | |
Publication date | dc.date.issued | 2006-03 | |
Cita de ítem | dc.identifier.citation | NONLINEARITY Volume: 19 Issue: 3 Pages: 661-684 Published: MAR 2006 | en |
Identifier | dc.identifier.issn | 0951-7715 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/124820 | |
Abstract | dc.description.abstract | We consider the boundary value problem: Delta u - au + epsilon(2)e(u) = 0, u > 0 in Omega, sigma u/sigma v = 0 on sigma Omega, which is equivalent to the stationary Keller-Segel system from chemotaxis. Here Omega subset of R-2 is a smooth and bounded domain. We show that given any two non-negative integers k, l with k + l >= 1, for e sufficiently small, there exists a solution u(epsilon) for which epsilon(2)e(u epsilon) develops asymptotically k interior Dirac deltas with weight 8 pi and l boundary deltas with weight 4 pi. Location of blow-up points is characterized explicitly in terms of Green's function of the Neumann problem. | en |
Lenguage | dc.language.iso | en | en |
Publisher | dc.publisher | IOP PUBLISHING LTD | en |
Keywords | dc.subject | PERTURBED NEUMANN PROBLEMS | en |
Título | dc.title | Collapsing steady states of the Keller-Segel system | en |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas