Show simple item record

Authordc.contributor.authorPino Manresa, Manuel del 
Authordc.contributor.authorMuñoz, Claudio es_CL
Admission datedc.date.accessioned2009-03-26T17:19:42Z
Available datedc.date.available2009-03-26T17:19:42Z
Publication datedc.date.issued2006-12-01
Cita de ítemdc.identifier.citationJOURNAL OF DIFFERENTIAL EQUATIONS Volume: 231 Issue: 1 Pages: 108-134 Published: DEC 1 2006en
Identifierdc.identifier.issn0022-0396
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/124822
Abstractdc.description.abstractWe consider the problem of Ambrosetti-Prodi type [GRAPHICS] where Q is a bounded, smooth domain in R-2, phi(1) is a positive first eigenfunction of the Laplacian under Dirichlet boundary conditions and h is an element of C-0,C-alpha(Omega). We prove that given k >= 1 this problem has at least k solutions for all sufficiently large s > 0, which answers affirmatively a conjecture by Lazer and McKenna [A.C. Lazer, P.J. McKenna, On the number of solutions of a nonlinear Dirichlet problem, J. Math. Anal. Appl. 84 (1981) 282-294] for this case. The solutions found exhibit multiple concentration behavior around maxima of phi(1) as s +infinity.en
Lenguagedc.language.isoenen
Publisherdc.publisherACADEMIC PRESS INC ELSEVIER SCIENCEen
Keywordsdc.subjectLIOUVILLE-TYPE EQUATIONSen
Títulodc.titleThe two-dimensional Lazer-McKenna conjecture for an exponential nonlinearityen
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record