The two-dimensional Lazer-McKenna conjecture for an exponential nonlinearity
Author | dc.contributor.author | Pino Manresa, Manuel del | |
Author | dc.contributor.author | Muñoz, Claudio | es_CL |
Admission date | dc.date.accessioned | 2009-03-26T17:19:42Z | |
Available date | dc.date.available | 2009-03-26T17:19:42Z | |
Publication date | dc.date.issued | 2006-12-01 | |
Cita de ítem | dc.identifier.citation | JOURNAL OF DIFFERENTIAL EQUATIONS Volume: 231 Issue: 1 Pages: 108-134 Published: DEC 1 2006 | en |
Identifier | dc.identifier.issn | 0022-0396 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/124822 | |
Abstract | dc.description.abstract | We consider the problem of Ambrosetti-Prodi type [GRAPHICS] where Q is a bounded, smooth domain in R-2, phi(1) is a positive first eigenfunction of the Laplacian under Dirichlet boundary conditions and h is an element of C-0,C-alpha(Omega). We prove that given k >= 1 this problem has at least k solutions for all sufficiently large s > 0, which answers affirmatively a conjecture by Lazer and McKenna [A.C. Lazer, P.J. McKenna, On the number of solutions of a nonlinear Dirichlet problem, J. Math. Anal. Appl. 84 (1981) 282-294] for this case. The solutions found exhibit multiple concentration behavior around maxima of phi(1) as s +infinity. | en |
Lenguage | dc.language.iso | en | en |
Publisher | dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | en |
Keywords | dc.subject | LIOUVILLE-TYPE EQUATIONS | en |
Título | dc.title | The two-dimensional Lazer-McKenna conjecture for an exponential nonlinearity | en |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas