Show simple item record

Authordc.contributor.authorEstévez Valencia, Pablo 
Authordc.contributor.authorFigueroa, Cristián es_CL
Admission datedc.date.accessioned2009-03-31T15:30:33Z
Available datedc.date.available2009-03-31T15:30:33Z
Publication datedc.date.issued2006-08
Cita de ítemdc.identifier.citationNEURAL NETWORKS Volume: 19 Issue: 6-7 Pages: 923-934 Published: JUL-AUG 2006en
Identifierdc.identifier.issn0893-6080
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/124852
Abstractdc.description.abstractA high-quality distance preserving output representation is provided to the neural gas (NG) network. The nonlinear mapping is determined concurrently along with the codebook vectors. The adaptation rule for codebook positions in the projection space minimizes a cost function that favors the trustworthy preservation of the local topology. The proposed visualization method, called OVI-NG, is an enhancement over curvilinear component analysis (CCA). The results show that the mapping quality obtained with OVI-NG outperforms the original CCA, in terms of the trustworthiness, continuity, topographic function and topology preservation measures.en
Lenguagedc.language.isoenen
Publisherdc.publisherPERGAMON-ELSEVIER SCIENCE LTDen
Keywordsdc.subjectNONLINEAR DIMENSIONALITY REDUCTIONen
Títulodc.titleOnline data visualization using the neural gas networken
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record