Show simple item record

Authordc.contributor.authorFelmer Aichele, Patricio es_CL
Authordc.contributor.authorMartínez Salazar, Salomé 
Authordc.contributor.authorTanaka, Kazunaga es_CL
Admission datedc.date.accessioned2009-03-31T15:50:17Z
Available datedc.date.available2009-03-31T15:50:17Z
Publication datedc.date.issued2006-10
Cita de ítemdc.identifier.citationARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS Volume: 182 Issue: 2 Pages: 333-366 Published: OCT 2006en
Identifierdc.identifier.issn0003-9527
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/124854
Abstractdc.description.abstractThis article is devoted to the nonlinear Schrodinger equation epsilon(2)u'' - V(x)u + vertical bar u vertical bar(p-1)u = 0, when the parameter epsilon approaches zero. All possible asymptotic behaviors of bounded solutions can be described by means of envelopes, or alternatively by adiabatic profiles. We prove that for every envelope, there exists a family of solutions reaching that asymptotic behavior, in the case of bounded intervals. We use a combination of the Nehari finite dimensional reduction together with degree theory. Our main contribution is to compute the degree of each cluster, which is a key piece of information in order to glue them.en
Lenguagedc.language.isoenen
Publisherdc.publisherSPRINGERen
Keywordsdc.subjectPHASE-TRANSITION PROBLEMen
Títulodc.titleHigh frequency solutions for the singularly-perturbed one-dimensional nonlinear Schrodinger equationen
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record