High-frequency chaotic solutions for a slowly varying dynamical system
Author | dc.contributor.author | Felmer Aichele, Patricio | es_CL |
Author | dc.contributor.author | Martínez Salazar, Salomé | es_CL |
Author | dc.contributor.author | Tanaka, Kazunaga | |
Admission date | dc.date.accessioned | 2009-04-01T17:17:07Z | |
Available date | dc.date.available | 2009-04-01T17:17:07Z | |
Publication date | dc.date.issued | 2006-04 | |
Cita de ítem | dc.identifier.citation | ERGODIC THEORY AND DYNAMICAL SYSTEMS Volume: 26 Pages: 379-407 Part: Part 2 Published: APR 2006 | en |
Identifier | dc.identifier.issn | 0143-3857 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/124855 | |
Abstract | dc.description.abstract | In this article we study the asymptotic dynamics of highly oscillatory solutions for the unbalanced Allen-Cahn equation with a slowly varying coefficient. We describe the underlying structure of these solutions through a function we call the adiabatic profile, which accounts for the asymptotic area covered by the Solutions in the phase space. In finite intervals, we construct solutions given any adiabatic profile. In the case of a periodic coefficient we show that the system has chaotic behavior by constructing high-frequency complex solutions which can be characterized by a bi-infinite sequence of real numbers in [c(1), c(2)] boolean OR {0} (0 < c(1) < c(2)). | en |
Lenguage | dc.language.iso | en | en |
Publisher | dc.publisher | CAMBRIDGE UNIV PRESS | en |
Keywords | dc.subject | PHASE-TRANSITION PROBLEM | en |
Título | dc.title | High-frequency chaotic solutions for a slowly varying dynamical system | en |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas