A note on tilings and translation surfaces
Author | dc.contributor.author | Gambaudo, Jean Marc | |
Admission date | dc.date.accessioned | 2009-04-07T10:44:25Z | |
Available date | dc.date.available | 2009-04-07T10:44:25Z | |
Publication date | dc.date.issued | 2006-02 | |
Cita de ítem | dc.identifier.citation | ERGODIC THEORY AND DYNAMICAL SYSTEMS Volume: 26 Pages: 179-188 Part: Part 1 Published: FEB 2006 | en |
Identifier | dc.identifier.issn | 0143-3857 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/124873 | |
Abstract | dc.description.abstract | Consider a tiling T of the two-dimensional Euclidean space made with copies up to translation of a finite number of polygons meeting each other full edge to full edge. In this paper, we prove that, associated with T, there exists a tiling of a (compact) translation surface made with copies up to translation of some of the polygons used to construct T. Furthermore, when T is repetitive, there exists a tiling of a translation surface, made with copies up to translation of arbitrarily large polygons chosen in a finite collection of patches of T; each of these patches contain copies of all the polygons used to construct T. | en |
Lenguage | dc.language.iso | en | en |
Publisher | dc.publisher | CAMBRIDGE UNIV PRESS | en |
Keywords | dc.subject | SPACES | en |
Título | dc.title | A note on tilings and translation surfaces | en |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas