Show simple item record

Authordc.contributor.authorGarcía-Huidobro, Marta 
Authordc.contributor.authorManásevich Tolosa, Raúl es_CL
Authordc.contributor.authorYarur, Cecilia S. es_CL
Admission datedc.date.accessioned2009-04-07T11:16:26Z
Available datedc.date.available2009-04-07T11:16:26Z
Publication datedc.date.issued2006-04-01
Cita de ítemdc.identifier.citationJOURNAL OF DIFFERENTIAL EQUATIONS Volume: 223 Issue: 1 Pages: 51-95 Published: APR 1 2006en
Identifierdc.identifier.issn0022-0396
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/124875
Abstractdc.description.abstractLet A. B : (0, infinity) -> (0 infinity) be two given weight functions and consider the equation (P) - div (A(vertical bar x vertical bar)vertical bar del u vertical bar(p-2)del u) = B (vertical bar x vertical bar)vertical bar u vertical bar(q-2)u, x is an element of R-n, where q > p > 1. By considering positive radial solutions to this equation that are bounded, we are led to study the initial value problem {-(a(r)vertical bar u'vertical bar(p-2) u') = b(r) (u(+))(q-1), r is an element of (0, infinity) u(0) = alpha > 0, lim(r -> 0) a (r)vertical bar u'(r)vertical bar(p-1)=0, where a(r) = r((N-1)) A(r) and b(r) = r((N-1)) B(r). By means of two key functions in and B-q defined below, we obtain several new results that allow us to classify solutions to this initial value problem as being respectively crossing, slowly decaying, or rapidly decaying. We also generalize several results in Clement et al. (Asymptotic Anal. 17 (1998) 13-29), Kawano et al. (Funkcial. Ekvac 36 (1993) 121-145), Yanagida and Yotsutani (Arch. Rational Mech. Anal. 124 (1993) 239-259), Yanagida and Yotsutani (J. Differential Equations 115 (1995) 477-502), Yanagida and Yotsutani.en
Lenguagedc.language.isoenen
Publisherdc.publisherACADEMIC PRESS INC ELSEVIER SCIENCEen
Keywordsdc.subjectSEMILINEAR ELLIPTIC-EQUATIONSen
Títulodc.titleOn the structure of positive radial solutions to an equation containing a p-Laplacian with weighten
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record