A concentration bound for the longest increasing subsequence of a randomly chosen involution
Author | dc.contributor.author | Kiwi Krauskopf, Marcos | |
Admission date | dc.date.accessioned | 2009-04-14T10:53:54Z | |
Available date | dc.date.available | 2009-04-14T10:53:54Z | |
Publication date | dc.date.issued | 2006-08-15 | |
Cita de ítem | dc.identifier.citation | DISCRETE APPLIED MATHEMATICS Volume: 154 Issue: 13 Pages: 1816-1823 Published: AUG 15 2006 | en |
Identifier | dc.identifier.issn | 0166-218X | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/124900 | |
Abstract | dc.description.abstract | In this short note we prove a concentration result for the length of the longest increasing subsequence (LIS) of a randomly and uniformly chosen involution of {1,..., s}. | en |
Lenguage | dc.language.iso | en | en |
Publisher | dc.publisher | ELSEVIER | en |
Keywords | dc.subject | RANDOM PERMUTATIONS | en |
Título | dc.title | A concentration bound for the longest increasing subsequence of a randomly chosen involution | en |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas