A fast probabilistic model for hypothesis rejection in SIFT-based object recognition
Author | dc.contributor.author | Loncomilla, Patricio | |
Author | dc.contributor.author | Ruiz del Solar, Javier | es_CL |
Admission date | dc.date.accessioned | 2009-04-15T12:20:13Z | |
Available date | dc.date.available | 2009-04-15T12:20:13Z | |
Publication date | dc.date.issued | 2006 | |
Cita de ítem | dc.identifier.citation | PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS Book Series: LECTURE NOTES IN COMPUTER SCIENCE Volume: 4225 Pages: 696-705 Published: 2006 | en |
Identifier | dc.identifier.issn | 0302-9743 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/124908 | |
Abstract | dc.description.abstract | This paper proposes an improvement over the traditional SIFT-based object recognition methodology proposed by Lowe [3]. This improvement corresponds to a fast probabilistic model for hypothesis rejection (affine solution verification stage), which allows a large reduction in the number of false positives. The new probabilistic model is evaluated in an object recognition task using a database of 100 pairs of images. | en |
Lenguage | dc.language.iso | en | en |
Publisher | dc.publisher | SPRINGER-VERLAG BERLIN | en |
Keywords | dc.subject | SCALE | en |
Título | dc.title | A fast probabilistic model for hypothesis rejection in SIFT-based object recognition | en |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas