Some multipoint boundary value problems of Neumann-Dirichlet type involving a multipoint p-Laplace like operator
Author | dc.contributor.author | García-Huidobro, Marta | |
Author | dc.contributor.author | Gupta, Chaitan P. | es_CL |
Author | dc.contributor.author | Manásevich Tolosa, Raúl | es_CL |
Admission date | dc.date.accessioned | 2009-05-28T15:45:59Z | |
Available date | dc.date.available | 2009-05-28T15:45:59Z | |
Publication date | dc.date.issued | 2007-09 | |
Cita de ítem | dc.identifier.citation | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.: 333, issue: 1, p.: 247-264, SEP 1, 2007 | en |
Identifier | dc.identifier.issn | 0022-247X | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/124943 | |
Abstract | dc.description.abstract | Let φ and θ be two increasing homeomorphisms from R onto R with φ(0) = 0, θ(0) = 0. Let f : [0, 1]× R×R → R be a function satisfying Carathéodory’s conditions, and for each i, i = 1, 2, . . . , m − 2, let ai :R → R, be a continuous function, with m−2 i=1 ai (0) = 1, ξi ∈ (0, 1), 0 < ξ1 < ξ2 < · · · < ξm−2 < 1. In this paper we first prove a suitable continuation lemma of Leray–Schauder type which we use to obtain several existence results for the m-point boundary value problem: φ(u ) = f (t,u,u ), t ∈ (0, 1), u (0) = 0, θ u(1) = m −2 i=1 θ u(ξi ) ai u (ξi ) . We note that this problem is at resonance, in the sense that the associated m-point boundary value problem φ u (t) = 0, t∈ (0, 1), u (0) = 0, θ u(1) = m −2 i=1 θ u(ξi ) ai u (ξi ) h as the non-trivial solution u(t) = Ï , where Ï âˆˆ R is an arbitrary constant vector, in view of the assumption m−2 i=1 ai (0) = 1. © 2006 Elsevier Inc. All rights reserved. | en |
Lenguage | dc.language.iso | en | en |
Publisher | dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | en |
Keywords | dc.subject | Multipoint | en |
Título | dc.title | Some multipoint boundary value problems of Neumann-Dirichlet type involving a multipoint p-Laplace like operator | en |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas