Show simple item record

Authordc.contributor.authorGarcía-Huidobro, Marta 
Authordc.contributor.authorGupta, Chaitan P. es_CL
Authordc.contributor.authorManásevich Tolosa, Raúl es_CL
Admission datedc.date.accessioned2009-05-28T15:45:59Z
Available datedc.date.available2009-05-28T15:45:59Z
Publication datedc.date.issued2007-09
Cita de ítemdc.identifier.citationJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.: 333, issue: 1, p.: 247-264, SEP 1, 2007en
Identifierdc.identifier.issn0022-247X
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/124943
Abstractdc.description.abstractLet φ and θ be two increasing homeomorphisms from R onto R with φ(0) = 0, θ(0) = 0. Let f : [0, 1]× R×R → R be a function satisfying Carathéodory’s conditions, and for each i, i = 1, 2, . . . , m − 2, let ai :R → R, be a continuous function, with m−2 i=1 ai (0) = 1, ξi ∈ (0, 1), 0 < ξ1 < ξ2 < · · · < ξm−2 < 1. In this paper we first prove a suitable continuation lemma of Leray–Schauder type which we use to obtain several existence results for the m-point boundary value problem: φ(u ) = f (t,u,u ), t ∈ (0, 1), u (0) = 0, θ u(1) = m −2 i=1 θ u(ξi ) ai u (ξi ) . We note that this problem is at resonance, in the sense that the associated m-point boundary value problem φ u (t) = 0, t∈ (0, 1), u (0) = 0, θ u(1) = m −2 i=1 θ u(ξi ) ai u (ξi ) h as the non-trivial solution u(t) = Ï , where Ï âˆˆ R is an arbitrary constant vector, in view of the assumption m−2 i=1 ai (0) = 1. © 2006 Elsevier Inc. All rights reserved.en
Lenguagedc.language.isoenen
Publisherdc.publisherACADEMIC PRESS INC ELSEVIER SCIENCEen
Keywordsdc.subjectMultipointen
Títulodc.titleSome multipoint boundary value problems of Neumann-Dirichlet type involving a multipoint p-Laplace like operatoren
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record