Practical construction of k-nearest neighbor graphs in metric spaces
Author | dc.contributor.author | Paredes, Rodrigo | |
Author | dc.contributor.author | Chávez, Edgar | es_CL |
Author | dc.contributor.author | Figueroa, Karina | es_CL |
Author | dc.contributor.author | Navarro, Gonzalo | es_CL |
Admission date | dc.date.accessioned | 2009-06-08T12:42:33Z | |
Available date | dc.date.available | 2009-06-08T12:42:33Z | |
Publication date | dc.date.issued | 2006 | |
Cita de ítem | dc.identifier.citation | EXPERIMENTAL ALGORITHMS, PROCEEDINGS Book Series: LECTURE NOTES IN COMPUTER SCIENCE Volume: 4007 Pages: 85-97 Published: 2006 | en |
Identifier | dc.identifier.issn | 0302-9743 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/124959 | |
Abstract | dc.description.abstract | Let U be a set of elements and d a distance function defined among them. Let NNk (u) be the k elements in U - {u} having the smallest distance to u. The k-nearest neighbor graph (kNNG) is a weighted directed graph G(U,E) such that E = {(u,v), v is an element of NNk(u)}. Several kNNG construction algorithms are known, but they are not suitable to general metric spaces. We present a general methodology to construct kNNGS that exploits several features of metric spaces. Experiments suggest that it yields costs of the form c(1)n(1.27) distance computations for low and medium dimensional spaces, and c(2)n(1.90) for high dimensional ones. | en |
Lenguage | dc.language.iso | en | en |
Publisher | dc.publisher | SPRINGER-VERLAG BERLIN | en |
Keywords | dc.subject | DECOMPOSITION | en |
Título | dc.title | Practical construction of k-nearest neighbor graphs in metric spaces | en |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas