Show simple item record

Authordc.contributor.authorParedes, Rodrigo 
Authordc.contributor.authorChávez, Edgar es_CL
Authordc.contributor.authorFigueroa, Karina es_CL
Authordc.contributor.authorNavarro, Gonzalo es_CL
Admission datedc.date.accessioned2009-06-08T12:42:33Z
Available datedc.date.available2009-06-08T12:42:33Z
Publication datedc.date.issued2006
Cita de ítemdc.identifier.citationEXPERIMENTAL ALGORITHMS, PROCEEDINGS Book Series: LECTURE NOTES IN COMPUTER SCIENCE Volume: 4007 Pages: 85-97 Published: 2006en
Identifierdc.identifier.issn0302-9743
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/124959
Abstractdc.description.abstractLet U be a set of elements and d a distance function defined among them. Let NNk (u) be the k elements in U - {u} having the smallest distance to u. The k-nearest neighbor graph (kNNG) is a weighted directed graph G(U,E) such that E = {(u,v), v is an element of NNk(u)}. Several kNNG construction algorithms are known, but they are not suitable to general metric spaces. We present a general methodology to construct kNNGS that exploits several features of metric spaces. Experiments suggest that it yields costs of the form c(1)n(1.27) distance computations for low and medium dimensional spaces, and c(2)n(1.90) for high dimensional ones.en
Lenguagedc.language.isoenen
Publisherdc.publisherSPRINGER-VERLAG BERLINen
Keywordsdc.subjectDECOMPOSITIONen
Títulodc.titlePractical construction of k-nearest neighbor graphs in metric spacesen
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record