Show simple item record

Authordc.contributor.authorAgez, Gonzague 
Authordc.contributor.authorClerc Gavilán, Marcel es_CL
Authordc.contributor.authorLouvergneaux, Eric es_CL
Admission datedc.date.accessioned2010-01-06T12:46:26Z
Available datedc.date.available2010-01-06T12:46:26Z
Publication datedc.date.issued2008-02
Cita de ítemdc.identifier.citationPHYSICAL REVIEW E Volume: 77 Issue: 2 Article Number: 026218 Part: Part 2 Published: FEB 2008en_US
Identifierdc.identifier.issn1539-3755
Identifierdc.identifier.other10.1103/PhysRevE.77.026218
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125034
Abstractdc.description.abstractA universal analytical expression for the supercritical bifurcation shape of transverse one-dimensional (1D) systems in the presence of additive noise is given. The stochastic Langevin equation of such systems is solved by using a Fokker-Planck equation, leading to the expression for the most probable amplitude of the critical mode. From this universal expression, the shape of the bifurcation, its location, and its evolution with the noise level are completely defined. Experimental results obtained for a 1D transverse Kerr-type slice subjected to optical feedback are in excellent agreement.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherAMER PHYSICAL SOCen_US
Keywordsdc.subjectFEEDBACK MIRRORen_US
Títulodc.titleUniversal shape law of stochastic supercritical bifurcations: Theory and experimentsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record