Universal shape law of stochastic supercritical bifurcations: Theory and experiments
Author | dc.contributor.author | Agez, Gonzague | |
Author | dc.contributor.author | Clerc Gavilán, Marcel | es_CL |
Author | dc.contributor.author | Louvergneaux, Eric | es_CL |
Admission date | dc.date.accessioned | 2010-01-06T12:46:26Z | |
Available date | dc.date.available | 2010-01-06T12:46:26Z | |
Publication date | dc.date.issued | 2008-02 | |
Cita de ítem | dc.identifier.citation | PHYSICAL REVIEW E Volume: 77 Issue: 2 Article Number: 026218 Part: Part 2 Published: FEB 2008 | en_US |
Identifier | dc.identifier.issn | 1539-3755 | |
Identifier | dc.identifier.other | 10.1103/PhysRevE.77.026218 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/125034 | |
Abstract | dc.description.abstract | A universal analytical expression for the supercritical bifurcation shape of transverse one-dimensional (1D) systems in the presence of additive noise is given. The stochastic Langevin equation of such systems is solved by using a Fokker-Planck equation, leading to the expression for the most probable amplitude of the critical mode. From this universal expression, the shape of the bifurcation, its location, and its evolution with the noise level are completely defined. Experimental results obtained for a 1D transverse Kerr-type slice subjected to optical feedback are in excellent agreement. | en_US |
Lenguage | dc.language.iso | en | en_US |
Publisher | dc.publisher | AMER PHYSICAL SOC | en_US |
Keywords | dc.subject | FEEDBACK MIRROR | en_US |
Título | dc.title | Universal shape law of stochastic supercritical bifurcations: Theory and experiments | en_US |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas