Author | dc.contributor.author | Bortolozzo, U. | |
Author | dc.contributor.author | Clerc Gavilán, Marcel | es_CL |
Author | dc.contributor.author | Residori, S. | es_CL |
Admission date | dc.date.accessioned | 2010-01-11T16:42:30Z | |
Available date | dc.date.available | 2010-01-11T16:42:30Z | |
Publication date | dc.date.issued | 2008-09 | |
Cita de ítem | dc.identifier.citation | PHYSICAL REVIEW E Volume: 78 Issue: 3 Article Number: 036214 Part: Part 2 Published: SEP 2008 | en_US |
Identifier | dc.identifier.issn | 1539-3755 | |
Identifier | dc.identifier.other | 10.1103/PhysRevE.78.036214 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/125074 | |
Abstract | dc.description.abstract | Localized states in out of equilibrium one-dimensional systems are described by the homoclinic snaking associated with the infinite sequence of multibump localized solutions of the corresponding time reversible dynamical system. We show that when the pattern undergoes a saddle-node bifurcation the homoclinic snaking bifurcation diagram becomes slanted and a finite set of localized states continue to exist outside the region of bistability. This generic behavior offers a local theory resolution of the discrepancy between models and experiments. | en_US |
Patrocinador | dc.description.sponsorship | financial support from the ring
program ACT15 of Programa Bicentenario de Ciencia y
Tegnología of the Chilean government and FONDAP Grant
No. 11980002. This work has been partially supported by
Grant No. ANR-07-BLAN-0246-03 turbonde. | en_US |
Lenguage | dc.language.iso | en | en_US |
Publisher | dc.publisher | AMER PHYSICAL SOC | en_US |
Keywords | dc.subject | PATTERN-FORMATION | en_US |
Título | dc.title | Local theory of the slanted homoclinic snaking bifurcation diagram | en_US |
Document type | dc.type | Artículo de revista | |