Show simple item record

Authordc.contributor.authorPino Manresa, Manuel del 
Authordc.contributor.authorKowalczyk, Michal es_CL
Authordc.contributor.authorWei, Juncheng es_CL
Admission datedc.date.accessioned2010-01-13T13:23:50Z
Available datedc.date.available2010-01-13T13:23:50Z
Publication datedc.date.issued2008-12
Cita de ítemdc.identifier.citationCOMPTES RENDUS MATHEMATIQUE Volume: 346 Issue: 23-24 Pages: 1261-1266 Published: DEC 2008en_US
Identifierdc.identifier.issn1631-073X
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125101
Abstractdc.description.abstractWe consider the Allen–Cahn equation u +u 1− u2 =0 inRN. A celebrated conjecture by E. De Giorgi (1978) states that if u is a bounded solution to this problem such that ∂xNu>0, then the level sets {u=λ}, λ ∈R, must be hyperplanes at least if N 8. We construct a family of solutions which shows that this statement does not hold true for N 9.en_US
Patrocinadordc.description.sponsorshipThe first author has been partly supported by research grants Fondecyt 1070389 and FONDAP, Chile. The second author has been supported by Fondecyt grant 1050311, Nucleus Millennium grant P04-069-F, and FONDAP, Chile. The research of the third author is partially supported by an Earmarked Grant from RGC of Hong Kong and a Direct Grant from CUHK.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIERen_US
Keywordsdc.subjectELLIPTIC-EQUATIONSen_US
Títulodc.titleA counterexample to a conjecture by De Giorgi in large dimensionsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record