Fast and slow decay solutions for supercritical elliptic problems in exterior domains
Author | dc.contributor.author | Dávila, Juan | |
Author | dc.contributor.author | Pino Manresa, Manuel del | es_CL |
Author | dc.contributor.author | Musso, Mónica | es_CL |
Author | dc.contributor.author | Wei, Juncheng | es_CL |
Admission date | dc.date.accessioned | 2010-01-15T13:38:37Z | |
Available date | dc.date.available | 2010-01-15T13:38:37Z | |
Publication date | dc.date.issued | 2008-08 | |
Cita de ítem | dc.identifier.citation | CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS Volume: 32 Issue: 4 Pages: 453-480 Published: AUG 2008 | en_US |
Identifier | dc.identifier.issn | 0944-2669 | |
Identifier | dc.identifier.other | 10.1007/s00526-007-0154-1 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/125142 | |
Abstract | dc.description.abstract | We consider the elliptic problem Delta u + u(p) = 0, u > 0 in an exterior domain, Omega = R-N\D under zero Dirichlet and vanishing conditions, where D is smooth and bounded in R-N, N >= 3, and p is supercritical, namely p > N+2/N-2. We prove that this problem has infinitely many solutions with slow decay O(vertical bar x vertical bar(-2/p-1)) at infinity. In addition, a solution with fast decay O(vertical bar x vertical bar(2- N)) exists if p is close enough from above to the critical exponent. | en_US |
Lenguage | dc.language.iso | en | en_US |
Publisher | dc.publisher | SPRINGER | en_US |
Keywords | dc.subject | EQUATIONS | en_US |
Título | dc.title | Fast and slow decay solutions for supercritical elliptic problems in exterior domains | en_US |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas