Show simple item record

Authordc.contributor.authorPino Manresa, Manuel del 
Authordc.contributor.authorKowalczyk, Michal es_CL
Authordc.contributor.authorWei, Juncheng es_CL
Admission datedc.date.accessioned2010-01-15T14:10:16Z
Available datedc.date.available2010-01-15T14:10:16Z
Publication datedc.date.issued2008-12
Cita de ítemdc.identifier.citationCOMPTES RENDUS MATHEMATIQUE Volume: 346 Issue: 23-24 Pages: 1261-1266 Published: DEC 2008en_US
Identifierdc.identifier.issn1631-073X
Identifierdc.identifier.other10.1016/j.crma.2008.10.010
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125143
Abstractdc.description.abstractWe consider the Allen-Cahn equation Delta u + u(1 - u(2)) = 0 in R-N. A celebrated conjecture by E. De Giorgi (1978) states that if u is it bounded Solution to this problem Such that partial derivative(xN) u > 0, then the level sets {u =lambda}, lambda is an element of R, must be hyperplanes at least if N <= 8. We construct a family of solutions Which shows that this statement does not hold true for N >= 9.en_US
Patrocinadordc.description.sponsorshipThe ¯rst author has been partly supported by research grants Fondecyt 1070389 and FONDAP, Chile. The second author has been supported by Fondecyt grant 1050311, Nucleus Millennium grant P04-069-F, and FONDAP, Chile. The research of the third author is partially supported by an Earmarked Grant from RGC of Hong Kong and a Direct Grant from CUHK.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIERen_US
Keywordsdc.subjectELLIPTIC-EQUATIONSen_US
Títulodc.titleA counterexample to a conjecture by De Giorgi in large dimensionsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record