Author | dc.contributor.author | Pino Manresa, Manuel del | |
Author | dc.contributor.author | Kowalczyk, Michal | es_CL |
Author | dc.contributor.author | Wei, Juncheng | es_CL |
Admission date | dc.date.accessioned | 2010-01-15T14:10:16Z | |
Available date | dc.date.available | 2010-01-15T14:10:16Z | |
Publication date | dc.date.issued | 2008-12 | |
Cita de ítem | dc.identifier.citation | COMPTES RENDUS MATHEMATIQUE Volume: 346 Issue: 23-24 Pages: 1261-1266 Published: DEC 2008 | en_US |
Identifier | dc.identifier.issn | 1631-073X | |
Identifier | dc.identifier.other | 10.1016/j.crma.2008.10.010 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/125143 | |
Abstract | dc.description.abstract | We consider the Allen-Cahn equation
Delta u + u(1 - u(2)) = 0 in R-N.
A celebrated conjecture by E. De Giorgi (1978) states that if u is it bounded Solution to this problem Such that partial derivative(xN) u > 0, then the level sets {u =lambda}, lambda is an element of R, must be hyperplanes at least if N <= 8. We construct a family of solutions Which shows that this statement does not hold true for N >= 9. | en_US |
Patrocinador | dc.description.sponsorship | The ¯rst author has been partly supported by research grants Fondecyt
1070389 and FONDAP, Chile. The second author has been supported by Fondecyt grant 1050311,
Nucleus Millennium grant P04-069-F, and FONDAP, Chile. The research of the third author is
partially supported by an Earmarked Grant from RGC of Hong Kong and a Direct Grant from CUHK. | en_US |
Lenguage | dc.language.iso | en | en_US |
Publisher | dc.publisher | ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER | en_US |
Keywords | dc.subject | ELLIPTIC-EQUATIONS | en_US |
Título | dc.title | A counterexample to a conjecture by De Giorgi in large dimensions | en_US |
Document type | dc.type | Artículo de revista | |