Show simple item record

Authordc.contributor.authorFernández Maturana, Viviana 
Admission datedc.date.accessioned2010-01-20T18:40:56Z
Available datedc.date.available2010-01-20T18:40:56Z
Publication datedc.date.issued2008-06-01
Cita de ítemdc.identifier.citationPHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS Volume: 387 Issue: 14 Pages: 3615-3628 Published: JUN 1 2008en_US
Identifierdc.identifier.issn0378-4371
Identifierdc.identifier.other10.1016/j.physa.2008.02.055
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125199
Abstractdc.description.abstractCopula modeling has become an increasingly popular tool in finance to model assets returns dependency. In essence, copulas enable us to extract the dependence structure from the joint distribution function of a set of random variables and, at the same time, to isolate such dependence structure from the univariate marginal behavior. In this study, based on US stock data, we illustrate how tail-dependency tests may be misleading as a tool to select a copula that closely mimics the dependency structure of the data. This problem becomes more severe when the data is scaled by conditional volatility and/or filtered out for serial correlation. The discussion is complemented, under more general settings, with Monte Carlo simulations and portfolio management implications.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherELSEVIERen_US
Keywordsdc.subjectEXTREME-VALUE DEPENDENCEen_US
Títulodc.titleCopula-based measures of dependence structure in assets returnsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record