Author | dc.contributor.author | Dávila, Juan | |
Author | dc.contributor.author | Kowalczyk, Michal | es_CL |
Author | dc.contributor.author | Montenegro, Marcelo | es_CL |
Admission date | dc.date.accessioned | 2010-01-27T18:10:33Z | |
Available date | dc.date.available | 2010-01-27T18:10:33Z | |
Publication date | dc.date.issued | 2008-09-01 | |
Cita de ítem | dc.identifier.citation | JOURNAL OF FUNCTIONAL ANALYSIS Volume: 255 Issue: 5 Pages: 1057-1101 Published: SEP 1 2008 | en_US |
Identifier | dc.identifier.issn | 0022-1236 | |
Identifier | dc.identifier.other | 10.1016/j.jfa.2007.11.023 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/125252 | |
Abstract | dc.description.abstract | In this paper we consider the Green function for the Laplacian in a smooth bounded domain Omega subset of R-N with Robin boundary condition
partial derivative G(lambda)/partial derivative nu + lambda b(x)G(lambda) = 0, on partial derivative Omega,
and its regular part S-lambda(x,y), where b > 0 is smooth. We show that in general, as lambda -> infinity, the Robin function R-lambda(x) = S-lambda (x, x) has at least 3 critical points. Moreover, in the case b equivalent to const we prove that R-lambda has critical points near non-degenerate critical points of the mean curvature of the boundary, and when b not equivalent to const there are critical points of R-lambda near non-degenerate critical points of b. | en_US |
Lenguage | dc.language.iso | en | en_US |
Publisher | dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | en_US |
Keywords | dc.subject | CRITICAL SOBOLEV EXPONENT | en_US |
Título | dc.title | Critical points of the regular part of the harmonic Green function with Robin boundary condition | en_US |
Document type | dc.type | Artículo de revista | |