New upper bounds on the spectral radius of unicyclic graphs
Author | dc.contributor.author | Rojo, Oscar | |
Admission date | dc.date.accessioned | 2010-01-28T17:40:41Z | |
Available date | dc.date.available | 2010-01-28T17:40:41Z | |
Publication date | dc.date.issued | 2008-02-01 | |
Cita de ítem | dc.identifier.citation | ELSEVIER SCIENCE INC | en_US |
Identifier | dc.identifier.issn | 0024-3795 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/125278 | |
Abstract | dc.description.abstract | G = (V (G),E(G)) be a unicyclic simple undirected graph with largest vertex degree . Let Cr be the unique cycle of G. The graph G − E(Cr ) is a forest of r rooted treesT1,T2, . . .,Tr with root vertices v1, v2, . . ., vr , respectively. Let k(G) = max 1 i r {max{dist(vi, u) : u ∈ V (Ti )}} + 1, where dist(v, u) is the distance from v to u. Let μ1(G) and λ1(G) be the spectral radius of the Laplacian matrix and adjacency matrix of G, respectively. We prove that μ1(G) < + 2 − 1 cos π 2k(G) + 1 , whenever > 2 and λ1(G) < 2 − 1 cos π 2k(G) + 1 , whenever 4 or whenever = 3 and k(G) 4. © 2007 Elsevier Inc. All rights reserved. AMS classification: 5C50; 15A48; 05C05 | en_US |
Patrocinador | dc.description.sponsorship | Work supported by Project Fondecyt 1070537, Chile. | en_US |
Lenguage | dc.language.iso | en | en_US |
Publisher | dc.publisher | LINEAR ALGEBRA AND ITS APPLICATIONS, Volume: 428, Issue: 4, Pages: 754-764, 2008 | en_US |
Keywords | dc.subject | Tree | en_US |
Título | dc.title | New upper bounds on the spectral radius of unicyclic graphs | en_US |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas