Show simple item record

Authordc.contributor.authorCampos, Juan F. 
Admission datedc.date.accessioned2010-01-28T17:50:15Z
Available datedc.date.available2010-01-28T17:50:15Z
Publication datedc.date.issued2008-03-01
Cita de ítemdc.identifier.citationNONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS Volume: 68 Issue: 5 Pages: 1382-1397 Published: MAR 1 2008en_US
Identifierdc.identifier.issn0362-546X
Identifierdc.identifier.other10.1016/j.na.2006.12.032
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125280
Abstractdc.description.abstractIn this work we consider the following problem [GRAPHICS] with N/(N - 2) < p < p* = (N + 2)/(N - 2) < q, N >= 3. We prove that if p is fixed, and q is close enough to the critical exponent p*, then there exists a radial solution which behaves like a superposition of bubbles of different blow-up orders centered at the origin. Similarly when q is fixed and p is sufficiently close to the critical, we prove the existence of a radial solution which resembles a superposition of flat bubbles centered at the origin.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherPERGAMON-ELSEVIER SCIENCE LTDen_US
Keywordsdc.subjectBREZIS-NIRENBERG PROBLEMen_US
Títulodc.title"Bubble-Tower" phenomena in a semilinear elliptic equation with mixed Sobolev growthen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record