Show simple item record

Authordc.contributor.authorPino Manresa, Manuel del 
Authordc.contributor.authorKowalczyk, Michal es_CL
Authordc.contributor.authorPacard, Frank es_CL
Authordc.contributor.authorWei, Juncheng es_CL
Admission datedc.date.accessioned2010-06-17T14:36:13Z
Available datedc.date.available2010-06-17T14:36:13Z
Publication datedc.date.issued2010
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125345
Abstractdc.description.abstractWe construct a new class of positive solutions for the classical elliptic problem ¢u ¡ u + up = 0; p > 2; in R2: We establish a deep relation between them and the following Toda system c2f00 j = efj¡1¡fj ¡ efj¡fj+1 in R; j = 1; : : : ; k: We show that these solutions have the approximate form u(x; z) » Pk j=1 w(x ¡ fj(z)) where w is the unique even, positive, asymptotically vanishing solution of w00 ¡ w + wp = 0 in R. Functions fj(z), representing the multiple ends of u(x; z), solve the aforementioned Toda system, they are even, asymptotically linear, with f0 ´ ¡1 < f1 ¿ ¢ ¢ ¢ ¿ fk < fk+1 ´ +1: The solutions of the elliptic problem we construct have their counterpart in the theory of constant mean curvature surfaces. An analogy can also be made between their construction and the gluing of constant scalar curvature Fowler singular metrics in the sphere.en_US
Patrocinadordc.description.sponsorshipThis work has been partly supported by chilean research grants Fondecyt 1070389, 1050311, FONDAP, Nucleus Millennium grant P04-069-F, an Ecos-Conicyt contract and an Earmarked Grant from RGC of Hong Kong.en_US
Lenguagedc.language.isoenen_US
Títulodc.titleThe Toda system and multiple-end solutions of autonomous planar elliptic problemsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record