EXTREMAL ALGEBRAIC CONNECTIVITIES OF CERTAIN CATERPILLAR CLASSES AND SYMMETRIC CATERPILLARS
Author | dc.contributor.author | Rojo, Oscar | |
Author | dc.contributor.author | Medina, Luis | es_CL |
Author | dc.contributor.author | Abreu, Nair M. M. de | es_CL |
Author | dc.contributor.author | Justel, Claudia | es_CL |
Admission date | dc.date.accessioned | 2010-07-01T15:01:53Z | |
Available date | dc.date.available | 2010-07-01T15:01:53Z | |
Publication date | dc.date.issued | 2010-02 | |
Cita de ítem | dc.identifier.citation | Electronic Journal of Linear Algebra Volume 20, pp. 136-157, February 2010 | en_US |
Identifier | dc.identifier.issn | 1081-3810 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/125384 | |
Abstract | dc.description.abstract | A caterpillar is a tree in which the removal of all pendant vertices makes it a path. Let d ≥ 3 and n ≥ 6 be given. Let Pd−1 be the path of d − 1 vertices and Sp be the star of p + 1 vertices. Let p = [p1, p2, ..., pd−1] such that p1 ≥ 1, p2 ≥ 1, ..., pd−1 ≥ 1. Let C (p) be the caterpillar obtained from the stars Sp1 , Sp2 , ...,Spd−1 and the path Pd−1 by identifying the root of Spi with the i−vertex of Pd−1. Let n > 2 (d − 1) be given. Let C = {C (p) : p1 + p2 + ... + pd−1 = n − d + 1} and S = {C(p) ∈ C : pj = pd−j , j = 1, 2, · · · , ⌊ d − 1 2 ⌋}. In this paper, the caterpillars in C and in S having the maximum and the minimum algebraic connectivity are found. Moreover, the algebraic connectivity of a caterpillar in S as the smallest eigenvalue of a 2 × 2 - block tridiagonal matrix of order 2s × 2s if d = 2s + 1 or d = 2s + 2 is characterized. | en_US |
Patrocinador | dc.description.sponsorship | Work supported by CNPq 300563/94-9, Brazil. | en_US |
Lenguage | dc.language.iso | en | en_US |
Keywords | dc.subject | Laplacian matrix | en_US |
Título | dc.title | EXTREMAL ALGEBRAIC CONNECTIVITIES OF CERTAIN CATERPILLAR CLASSES AND SYMMETRIC CATERPILLARS | en_US |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas