Localized states and non-variational Ising Bloch transition of a parametrically driven easy-plane ferromagnetic wire
Author | dc.contributor.author | Clerc Gavilán, Marcel | |
Author | dc.contributor.author | Coulibaly, Saliya | es_CL |
Author | dc.contributor.author | Laroze, David | es_CL |
Admission date | dc.date.accessioned | 2010-07-13T19:40:42Z | |
Available date | dc.date.available | 2010-07-13T19:40:42Z | |
Publication date | dc.date.issued | 2010 | |
Cita de ítem | dc.identifier.citation | Physica D 239 (2010) 72-86 | en_US |
Identifier | dc.identifier.other | doi:10.1016/j.physd.2009.10.008 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/125403 | |
Abstract | dc.description.abstract | A time-periodic magnetic field applied transversally to the hard axis of an extended easy-plane ferromagnetic sample can produce parametric resonance. For the 2:1 resonance, the prototype orderparameter- equation derived from the Landau Lifshitz Gilbert dynamical model for the precessional motion is the parametrically driven damped nonlinear Schrödinger equation. Unfortunately this standard approximation fails to meet the stability feature of the synchronized precession states, and we propose some amendment. Localized solutions supported by the uniform states are characterized and classified into two types: motionless and propagative states, rising through a non-variational Ising Bloch transition. We propose and investigate a dynamical model ruling this transition. | en_US |
Lenguage | dc.language.iso | en | en_US |
Publisher | dc.publisher | ELSEVIER | en_US |
Keywords | dc.subject | Landau-Lifshitz-Gilbert equation | en_US |
Título | dc.title | Localized states and non-variational Ising Bloch transition of a parametrically driven easy-plane ferromagnetic wire | en_US |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas