Show simple item record

Authordc.contributor.authorCorrea, Rafael 
Authordc.contributor.authorGajardo, Pedro es_CL
Authordc.contributor.authorThibault, Lionel es_CL
Admission datedc.date.accessioned2010-07-13T20:20:45Z
Available datedc.date.available2010-07-13T20:20:45Z
Publication datedc.date.issued2010
Cita de ítemdc.identifier.citationSIAM J. OPTIM. Vol. 20, No. 4, pp. 1766–1785en_US
Identifierdc.identifier.otherDOI. 10.1137/080738271
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125407
Abstractdc.description.abstractIn this work we introduce for extended real valued functions, defined on a Banach space X, the concept of K directionally Lipschitzian behavior, where K is a bounded subset of X. For different types of sets K (e.g., zero, singleton, or compact), the K directionally Lipschitzian behavior recovers well-known concepts in variational analysis (locally Lipschitzian, directionally Lipschitzian, or compactly epi-Lipschitzian properties, respectively). Characterizations of this notion are provided in terms of the lower Dini subderivatives. We also adapt the concept for sets and establish characterizations of the mentioned behavior in terms of the Bouligand tangent cones. The special case of convex functions and sets is also studied.en_US
Patrocinadordc.description.sponsorshipThis research was partially supported by FONDECYT project 1080173 and Programa Basal CMM U. de Chile.en_US
Lenguagedc.language.isoenen_US
Keywordsdc.subjectdirectional derivativeen_US
Títulodc.titleVARIOUS LIPSCHITZ-LIKE PROPERTIES FOR FUNCTIONS AND SETS I: DIRECTIONAL DERIVATIVE AND TANGENTIAL CHARACTERIZATIONSen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record