Show simple item record

Authordc.contributor.authorEsteban, María J. es_CL
Authordc.contributor.authorFelmer Aichele, Patricio 
Authordc.contributor.authorQuaas, Alexander es_CL
Admission datedc.date.accessioned2010-07-14T14:09:16Z
Available datedc.date.available2010-07-14T14:09:16Z
Publication datedc.date.issued2010
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125412
Abstractdc.description.abstractIn this paper we deal with existence and uniqueness of solution to the fully nonlinear equation −F(D2u) + |u|s−1u = f(x) in IRn, where s > 1 and f satisfies only local integrability conditions. This result is well known when, instead of the fully nonlinear elliptic operator F, the Laplacian or a divergence form operator is considered. Our existence results use the Alexandroff-Bakelman-Pucci inequality since we cannot use any variational formulation. For radially symmetric f, and in the particular case where F is a maximal Pucci operator, we can prove our results under less integrability assumptions, taking advantage of an appropriate variational formulation. We also obtain an existence result with boundary explosion in smooth domains.en_US
Lenguagedc.language.isoenen_US
Keywordsdc.subjectPucci operatoren_US
Títulodc.titleSUPER-LINEAR ELLIPTIC EQUATION FOR FULLY NONLINEAR OPERATORS WITHOUT GROWTH RESTRICTIONS FOR THE DATAen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record