Show simple item record

Authordc.contributor.authorEmery, Xavier 
Authordc.contributor.authorOrtiz Cabrera, Julián es_CL
Admission datedc.date.accessioned2011-10-26T20:17:30Z
Available datedc.date.available2011-10-26T20:17:30Z
Publication datedc.date.issued2011-02
Cita de ítemdc.identifier.citationMATHEMATICAL GEOSCIENCES Volume: 43 Issue: 2 Pages: 183-202 Published: FEB 2011es_CL
Identifierdc.identifier.issn1874-8961
Identifierdc.identifier.otherDOI: 10.1007/s11004-010-9305-6
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125504
General notedc.descriptionArtículo de publicación ISIes_CL
Abstractdc.description.abstractIn order to determine to what extent a spatial random field can be characterized by its low-order distributions, we consider four models (specifically, random spatial tessellations) with exactly the same univariate and bivariate distributions and we compare the statistics associated with various multiple-point configurations and the responses to specific transfer functions. The three- and four-point statistics are found to be the same or experimentally hardly distinguishable because of ergodic fluctuations, whereas change of support and flow simulation produce very different outcomes. This example indicates that low-order distributions may not discriminate between contending random field models, that simulation algorithms based on such distributions may not reproduce the spatial properties of a given model or training image, and that the inference of high-order distribution may require very large training images.es_CL
Lenguagedc.language.isoenes_CL
Publisherdc.publisherSPRINGER HEIDELBERGes_CL
Keywordsdc.subjectMultivariate distributionses_CL
Títulodc.titleA Comparison of Random Field Models Beyond Bivariate Distributionses_CL
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record