Author | dc.contributor.author | Estévez Valencia, Pablo | |
Author | dc.contributor.author | Hernández, R. | es_CL |
Author | dc.contributor.author | Pérez Flores, Claudio | es_CL |
Author | dc.contributor.author | Held, C. M. | es_CL |
Admission date | dc.date.accessioned | 2011-10-27T14:31:04Z | |
Available date | dc.date.available | 2011-10-27T14:31:04Z | |
Publication date | dc.date.issued | 2011-04-14 | |
Cita de ítem | dc.identifier.citation | ELECTRONICS LETTERS Volume: 47 Issue: 8 Pages: 494-496 Published: APR 14 2011 | es_CL |
Identifier | dc.identifier.issn | 0013-5194 | |
Identifier | dc.identifier.other | DOI: 10.1049/el.2011.0115 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/125506 | |
General note | dc.description | Artículo de publicación ISI | es_CL |
Abstract | dc.description.abstract | Adding gamma-filters to self-organising neural networks for unsupervised sequence processing is proposed. The proposed gamma-context model is applied to self-organising maps and neural gas networks. The gamma-context model is a generalisation that includes as a particular example the previously published merge-context model. The results show that the gamma-context model outperforms the merge-context model in terms of temporal quantisation error and state-space representation. | es_CL |
Patrocinador | dc.description.sponsorship | This work was funded by Conicyt-Chile under grant
Fondecyt no. 1080643. | es_CL |
Lenguage | dc.language.iso | en | es_CL |
Título | dc.title | Gamma-filter self-organising neural networks for unsupervised sequence processing | es_CL |
Document type | dc.type | Artículo de revista | |