Show simple item record

Authordc.contributor.authorEstévez Valencia, Pablo 
Authordc.contributor.authorHernández, R. es_CL
Authordc.contributor.authorPérez Flores, Claudio es_CL
Authordc.contributor.authorHeld, C. M. es_CL
Admission datedc.date.accessioned2011-10-27T14:31:04Z
Available datedc.date.available2011-10-27T14:31:04Z
Publication datedc.date.issued2011-04-14
Cita de ítemdc.identifier.citationELECTRONICS LETTERS Volume: 47 Issue: 8 Pages: 494-496 Published: APR 14 2011es_CL
Identifierdc.identifier.issn0013-5194
Identifierdc.identifier.otherDOI: 10.1049/el.2011.0115
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125506
General notedc.descriptionArtículo de publicación ISIes_CL
Abstractdc.description.abstractAdding gamma-filters to self-organising neural networks for unsupervised sequence processing is proposed. The proposed gamma-context model is applied to self-organising maps and neural gas networks. The gamma-context model is a generalisation that includes as a particular example the previously published merge-context model. The results show that the gamma-context model outperforms the merge-context model in terms of temporal quantisation error and state-space representation.es_CL
Patrocinadordc.description.sponsorshipThis work was funded by Conicyt-Chile under grant Fondecyt no. 1080643.es_CL
Lenguagedc.language.isoenes_CL
Títulodc.titleGamma-filter self-organising neural networks for unsupervised sequence processinges_CL
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record