Author | dc.contributor.author | Baillon, Jean-Bernard | |
Author | dc.contributor.author | Combettes, P. L. | es_CL |
Author | dc.contributor.author | Cominetti Cotti-Cometti, Roberto | es_CL |
Admission date | dc.date.accessioned | 2012-05-23T16:26:37Z | |
Available date | dc.date.available | 2012-05-23T16:26:37Z | |
Publication date | dc.date.issued | 2012-01-01 | |
Cita de ítem | dc.identifier.citation | JOURNAL OF FUNCTIONAL ANALYSIS Volume: 262 Issue: 1 Pages: 400-408 Published: JAN 1 2012 | es_CL |
Identifier | dc.identifier.other | DOI: 10.1016/j.jfa.2011.09.002 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/125600 | |
Abstract | dc.description.abstract | The method of periodic projections consists in iterating projections onto in closed convex subsets of a Hilbert space according to a periodic sweeping strategy. In the presence of in m >= 3 sets, a long-standing question going back to the 1960s is whether the limit cycles obtained by such a process can be characterized as the minimizers of a certain functional. In this paper we answer this question in the negative. Projection algorithms for minimizing smooth convex functions over a product of convex sets are also discussed. | es_CL |
Patrocinador | dc.description.sponsorship | Agence Nationale de la Recherche
ANR-08-BLAN-0294-02
FONDECYT
1100046
Instituto Milenio Sistemas Complejos en Ingenieria | es_CL |
Lenguage | dc.language.iso | en | es_CL |
Publisher | dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | es_CL |
Keywords | dc.subject | Alternating projections | es_CL |
Título | dc.title | There is no variational characterization of the cycles in the method of periodic projections | es_CL |
Document type | dc.type | Artículo de revista | |