Author | dc.contributor.author | Correa, Rafael | |
Author | dc.contributor.author | García, Yboon | es_CL |
Author | dc.contributor.author | Hantoute, Abderrahim | es_CL |
Admission date | dc.date.accessioned | 2012-05-29T20:53:27Z | |
Available date | dc.date.available | 2012-05-29T20:53:27Z | |
Publication date | dc.date.issued | 2012-02 | |
Cita de ítem | dc.identifier.citation | NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS Volume: 75 Issue: 3 Pages: 1188-1201 Published: FEB 2012 | es_CL |
Identifier | dc.identifier.other | DOI: 10.1016/j.na.2011.05.085 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/125612 | |
Abstract | dc.description.abstract | Starting from explicit expressions for the subdifferential of the conjugate function, we establish in the Banach space setting some integration results for the so-called epi-pointed functions. These results use the epsilon-subdifferential and the Fenchel subdifferential of an appropriate weak lower semicontinuous (lsc) envelope of the initial function. We apply these integration results to the construction of the lsc convex envelope either in terms of the epsilon-subdifferential of the nominal function or of the subdifferential of its weak lsc envelope. | es_CL |
Patrocinador | dc.description.sponsorship | Project Fondecyt
1080173
1110019
ECOS-CONICYT
C10E08 | es_CL |
Lenguage | dc.language.iso | en | es_CL |
Publisher | dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | es_CL |
Keywords | dc.subject | Integration | es_CL |
Título | dc.title | Integration formulas via the Fenchel subdifferential of nonconvex functions | es_CL |
Document type | dc.type | Artículo de revista | |