On Bloch waves for the Stokes equations
Author | dc.contributor.author | Allaire, Grégoire | |
Author | dc.contributor.author | Conca Rosende, Carlos | es_CL |
Author | dc.contributor.author | Friz, Luis | es_CL |
Author | dc.contributor.author | Ortega Palma, Jaime | es_CL |
Admission date | dc.date.accessioned | 2013-07-01T16:12:13Z | |
Available date | dc.date.available | 2013-07-01T16:12:13Z | |
Publication date | dc.date.issued | 2007-01 | |
Cita de ítem | dc.identifier.citation | DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B Volume: 7 Issue: 1 Pages: 1-28 Published: JAN 2007 | en_US |
Identifier | dc.identifier.issn | 1531-3492 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/125786 | |
General note | dc.description | Artículo de publicación ISI | en_US |
Abstract | dc.description.abstract | In this work, we study the Bloch wave decomposition for the Stokes equations in a periodic media in R-d. We prove that, because of the incompressibility constraint, the Bloch eigenvalues, as functions of the Bloch frequency xi, are not continuous at the origin. Nevertheless, when xi goes to zero in a fixed direction, we exhibit a new limit spectral problem for which the eigenvalues are directionally differentiable. Finally, we present an analogous study for the Bloch wave decomposition for a periodic perforated domain. | en_US |
Lenguage | dc.language.iso | en | en_US |
Publisher | dc.publisher | AMER INST MATHEMATICAL SCIENCES | en_US |
Keywords | dc.subject | spectral theory | en_US |
Título | dc.title | On Bloch waves for the Stokes equations | en_US |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas