Show simple item record

Authordc.contributor.authorCameron, Elion M. 
Authordc.contributor.authorLeybourne, Matthew I. es_CL
Authordc.contributor.authorPalacios Monasterio, Carlos es_CL
Admission datedc.date.accessioned2013-12-26T17:07:44Z
Available datedc.date.available2013-12-26T17:07:44Z
Publication datedc.date.issued2007
Cita de ítemdc.identifier.citationMiner Deposita (2007) 42:205–218en_US
Identifierdc.identifier.otherDOI 10.1007/s00126-006-0108-0
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125854
Abstractdc.description.abstractAtacamite, a copper hydroxychloride, is an important constituent of supergene oxide zones of copper deposits in northern Chile, whereas in similar deposits elsewhere, it is rare. In Chile, it has generally been assumed to be a primary constituent of the supergene zones. There are two difficulties with this supposition. The first is that atacamite requires saline water for its formation, whereas supergene oxidation was caused by percolating, oxygenated meteoric water, mainly rainwater. The second is that atacamite dissolves rapidly or undergoes phase change when exposed to fresh water. Supergene enrichment of copper deposits in northern Chile extended over a long period, 44 to 9 Ma, being terminated by the onset of hyperaridity. During this period, there was at least intermittent rainfall, exposing previously formed atacamite to dissolution or phase change. Furthermore, atacamite-bearing oxide zones in several deposits are directly overlain by thick Miocene alluvial gravels; the stream waters that transported these gravels would have permeated the oxide zones. In some deposits, atacamite-bearing assemblages occur both in the oxide zones and in contiguous gravels. We suggest that atacamite-bearing oxide assemblages are more likely to have been a replacement of preexisting oxide phases after the onset of hyperaridity at about 9 Ma. A hyperarid climate made possible evaporation and concentration of chloride in meteoric waters. In this paper, we discuss another source of saline waters to modify oxide zones. Dewatering of the Domeyko Basin expelled brines along faults, some of which had earlier guided the location of porphyry deposits. At the Spence porphyry copper deposit, saline waters, which δD vs δ18O isotope analyses identify as basinal brines, are presently rising through the deposit, then flowing away along the base of the covering gravels. Compositions of these waters lie within the stability fields of atacamite and brochantite, the two minerals that comprise the oxide zone. Evidence is presented for other porphyry deposits, Radomiro Tomic and Gaby Sur, that basinal brines may have been involved in the late formation of atacamite.en_US
Lenguagedc.language.isoen_USen_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectAtacamiteen_US
Títulodc.titleAtacamite in the oxide zone of copper deposits in northern Chile: involvement of deep formation waters?en_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile