A New Methodology for the Design of Passive Biped Robots: Determining Conditions on the Robot’s Parameters for the Existence of Stable Walking Cycles
Author
dc.contributor.author
Vallejos, Paul
Author
dc.contributor.author
Ruiz del Solar, Javier
es_CL
Author
dc.contributor.author
Swett, Francisco
es_CL
Admission date
dc.date.accessioned
2013-12-26T18:01:20Z
Available date
dc.date.available
2013-12-26T18:01:20Z
Publication date
dc.date.issued
2011
Cita de ítem
dc.identifier.citation
J Intell Robot Syst (2011) 63:503–523
en_US
Identifier
dc.identifier.other
10.1007/s10846-010-9524-6
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/125858
Abstract
dc.description.abstract
Currently, passive robots are designed following a trial and error process
in which the existence of a stable walking cycle for a given passive robot’s model
is analyzed using Poincaré maps. The standard stability analysis procedure suffers
from discretization aliasing, and it is not able to deal with complex passive models.
In this paper a methodology that allows finding conditions on the robot’s parameters
of a given passive model in order to obtain a stable walking cycle is proposed. The
proposed methodology overcomes the aliasing problem that arises when Poincaré
sections are discretized. Basically, it implements a search process that allows finding
stable subspaces in the parameters’ space (i.e., regions with parameters’ combinations
that produce stable walking cycles), by simulating the robot dynamics for
different parameters’ combinations. After initial conditions are randomly selected,
the robot’s dynamics is modeled step by step, and in the Poincaré section the
existence of a walking cycle is verified. The methodology includes the definition of a
search algorithm for exploring the parameters’ space, a method for the partition of
the space in hypercubes and their efficient management using proper data structures,and the use of so-called design value functions that quantify the feasibility of the
resulting parameters. Among the main characteristics of the proposed methodology
are being robot independent (it can be used with any passive robot model, regardless
of its complexity), and robust (stable subspaces incorporate a stability margin value
that deals with differences between the robot’s model and its physical realization).
The methodology is validated in the design process of a complex semi-passive robot
that includes trunk, knees, and non-punctual feet. The robot also considers the use
of actuators, controllers and batteries for its actuation.
en_US
Patrocinador
dc.description.sponsorship
This research work was partially funded by the doctoral grant program of
CONICYT (Chile), by MECESUP Project FSM 0601, and by FONDECYT project 1090250.
The aim of this paper is to propose a robot referee for robot soccer.
This idea is implemented using a service robot that moves along one of the field
sides, uses its own cameras to analyze the game, and communicates its ...
Ruiz del Solar, Javier; Mascaró Muñoz, Mauricio Alejandro; Correa, Mauricio; Bernuy Bahamondez, Fernando Javier; Riquelme, Rodrigo; Verschae, Rodrigo(2012-12-19)
The main goal of this article is to report and analyze the applicability
of a general-purpose social robot, developed in the context of the RoboCup
@Home league, in three different naturalistic environments: (i) home, ...
Ruiz del Solar, Javier; Arenas, Matías; Verschae, Rodrigo; Loncomilla, Patricio(2012-12-18)
The visual detection of robots is a difficult but relevant problem in several robotic applications. In the
present article, a framework for the robust and fast visual detection of legged-robots is proposed. This
framework ...