Show simple item record

Authordc.contributor.authorCerda, Enrique 
Authordc.contributor.authorTirapegui Zurbano, Enrique es_CL
Admission datedc.date.accessioned2013-12-27T12:49:52Z
Available datedc.date.available2013-12-27T12:49:52Z
Publication datedc.date.issued1997-02-03
Cita de ítemdc.identifier.citationPHYSICAL REVIEW LETTERS. VOLUME 78, NUMBER 5. 3 FEBRUARY 1997en_US
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125873
Abstractdc.description.abstractWe derive an exact equation which is nonlocal in time for the linear evolution of the surface of a viscous fluid, and show that this equation becomes local and of second order in an interesting limit. We use our local equation to study Faraday’s instability in a strongly dissipative regime and find a new scenario which is the analog of the Rayleigh-Taylor instability. Analytic and numerical calculations are presented for the threshold of the forcing and for the most unstable mode with impressive agreement with experiments and numerical work on the exact Navier-Stokes equations. [S0031-9007(96)02234-X]en_US
Lenguagedc.language.isoen_USen_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectFaraday’s Instabilityen_US
Títulodc.titleFaraday’s Instability for Viscous Fluidsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile