Show simple item record

Authordc.contributor.authorClerc Gavilán, Marcel 
Authordc.contributor.authorCoullet, P. es_CL
Authordc.contributor.authorTirapegui Zurbano, Enrique es_CL
Admission datedc.date.accessioned2013-12-27T15:11:20Z
Available datedc.date.available2013-12-27T15:11:20Z
Publication datedc.date.issued2001
Cita de ítemdc.identifier.citationInternational Journal of Bifurcation and Chaos, Vol. 11, No. 3 (2001) 591{603en_US
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125884
Abstractdc.description.abstractWe study the resonance at zero frequency in presence of a neutral mode in quasi-reversible systems. The asymptotic normal form is derived and it is shown that in the presence of a reflection symmetry it is equivalent to the set of real Lorenz equations. Near the critical point an analytical condition for the persistence of an homoclinic curve is calculated and chaotic behavior is then predicted and its existence veri ed by direct numerical simulation. A simple mechanical pendulum is shown to be an example of the instability, and preliminary experimental results agree with the theoretical predictions.en_US
Lenguagedc.language.isoen_USen_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectQUASI-REVERSIBLE SYSTEMSen_US
Títulodc.titleThe stationary instability in quasi-reversible systems and the lorenz pendulumen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile