Show simple item record

Authordc.contributor.authorDescalzi, Orazio 
Authordc.contributor.authorGutiérrez, Pablo es_CL
Authordc.contributor.authorTirapegui Zurbano, Enrique es_CL
Admission datedc.date.accessioned2014-01-02T14:52:42Z
Available datedc.date.available2014-01-02T14:52:42Z
Publication datedc.date.issued2005
Cita de ítemdc.identifier.citationInternational Journal of Modern Physics C Vol. 16, No. 12 (2005) 1909-1916en_US
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125929
Abstractdc.description.abstractWe study numerically a prototype equation which arises generically as an envelope equa- tion for a weakly inverted bifurcation associated to traveling waves: The complex quintic Ginzburg{Landau equation. We show six di erent stable localized structures including stationary pulses, moving pulses, stationary holes and moving holes, starting from lo- calized initial conditions with periodic and Neumann boundary conditions.en_US
Lenguagedc.language.isoen_USen_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectOscillatory instabilityen_US
Títulodc.titleLocalized structures in nonequilibrium systemsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile