Show simple item record

Authordc.contributor.authorDescalzi, Orazio 
Authordc.contributor.authorTirapegui Zurbano, Enrique es_CL
Admission datedc.date.accessioned2014-01-02T14:52:52Z
Available datedc.date.available2014-01-02T14:52:52Z
Publication datedc.date.issued2004
Cita de ítemdc.identifier.citationPhysica A 342 (2004) 9 – 15en_US
Identifierdc.identifier.otherDOI:10.1016/j.physa.2004.04.053
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125930
Abstractdc.description.abstractWe study analytically a system sustainingstable movinglocalized structures, namely, the one-dimensional quintic complex Ginzburg–Landau (G–L) equation with non-linear gradients. We obtain approximate solutions for the stable movingpulse and its velocity. The results are in excellent agreement with direct numerical simulations.en_US
Lenguagedc.language.isoen_USen_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectGinzburg–Landau equationen_US
Títulodc.titleOn the movingpulse solutions in systems with broken parityen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile