De Bruijn sequences and De Bruijn graphs for a general language
Author
dc.contributor.author
Moreno Araya, Eduardo
Admission date
dc.date.accessioned
2014-01-07T19:41:49Z
Available date
dc.date.available
2014-01-07T19:41:49Z
Publication date
dc.date.issued
2005
Cita de ítem
dc.identifier.citation
Information Processing Letters 96 (2005) 214–219
en_US
Identifier
dc.identifier.other
doi:10.1016/j.ipl.2005.05.028
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/126018
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
A de Bruijn sequence over a finite alphabet of span n is a cyclic string such that all words of length n appear exactly once as
factors of this sequence. We extend this definition to a subset of words of length n, characterizing for which subsets exists a de
Bruijn sequence.We also study some symbolic dynamical properties of these subsets extending the definition to a language defined
by forbidden factors. For these kinds of languages we present an algorithm to produce a de Bruijn sequence. In this work we use
graph-theoretic and combinatorial concepts to prove these results.