Show simple item record

Authordc.contributor.authorFelmer Aichele, Patricio es_CL
Authordc.contributor.authorTopp Paredes, Erwin 
Admission datedc.date.accessioned2014-01-08T13:45:35Z
Available datedc.date.available2014-01-08T13:45:35Z
Publication datedc.date.issued2013
Cita de ítemdc.identifier.citationISRAEL JOURNAL OF MATHEMATICS 198 (2013), 1–34en_US
Identifierdc.identifier.otherDOI: 10.1007/s11856-013-0008-9
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/126033
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractIn this article we study various convergence results for a class of nonlinear fractional heat equations of the form ⎧⎨ ⎩ ut(t, x)− I[u(t, ·)](x) = f(t, x), (t, x) ∈ (0, T) × Rn, u(0, x) = u0(x), x∈ Rn, where I is a nonlocal nonlinear operator of Isaacs type. Our aim is to study the convergence of solutions when the order of the operator changes in various ways. In particular, we consider zero order operators approaching fractional operators through scaling and fractional operators of decreasing order approaching zero order operators. We further give rate of convergence in cases when the solution of the limiting equation has appropriate regularity assumptions.en_US
Lenguagedc.language.isoenen_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Títulodc.titleCONVERGENCE RESULTS FOR A CLASS OF NONLINEAR FRACTIONAL HEAT EQUATIONSen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile