CONVERGENCE RESULTS FOR A CLASS OF NONLINEAR FRACTIONAL HEAT EQUATIONS
Author
dc.contributor.author
Felmer Aichele, Patricio
es_CL
Author
dc.contributor.author
Topp Paredes, Erwin
Admission date
dc.date.accessioned
2014-01-08T13:45:35Z
Available date
dc.date.available
2014-01-08T13:45:35Z
Publication date
dc.date.issued
2013
Cita de ítem
dc.identifier.citation
ISRAEL JOURNAL OF MATHEMATICS 198 (2013), 1–34
en_US
Identifier
dc.identifier.other
DOI: 10.1007/s11856-013-0008-9
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/126033
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
In this article we study various convergence results for a class of nonlinear
fractional heat equations of the form
⎧⎨
⎩
ut(t, x)− I[u(t, ·)](x) = f(t, x), (t, x) ∈ (0, T) × Rn,
u(0, x) = u0(x), x∈ Rn,
where I is a nonlocal nonlinear operator of Isaacs type. Our aim is to study
the convergence of solutions when the order of the operator changes in
various ways. In particular, we consider zero order operators approaching
fractional operators through scaling and fractional operators of decreasing
order approaching zero order operators. We further give rate of convergence
in cases when the solution of the limiting equation has appropriate
regularity assumptions.