Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time
Author
dc.contributor.author
San Martín, Jorge
Author
dc.contributor.author
Smaranda, Loredana
es_CL
Author
dc.contributor.author
Takahashi, Takéo
es_CL
Admission date
dc.date.accessioned
2014-01-09T14:10:52Z
Available date
dc.date.available
2014-01-09T14:10:52Z
Publication date
dc.date.issued
2009
Cita de ítem
dc.identifier.citation
Journal of Computational and Applied Mathematics 230 (2009) 521
en_US
Identifier
dc.identifier.other
doi:10.1016/j.cam.2008.12.021
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/126104
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
We consider the approximation of the unsteady Stokes equations in a time dependent
domain when the motion of the domain is given. More precisely, we apply the finite
element method to an Arbitrary Lagrangian Eulerian (ALE) formulation of the system. Our
main results state the convergence of the solutions of the semi-discretized (with respect to
the space variable) and of the fully-discrete problems towards the solutions of the Stokes
system.