Linear Complementarity Problems over Symmetric Cones: Characterization of Qb-transformations and Existence Results
Author
dc.contributor.author
López, Julio
Author
dc.contributor.author
López, Rubén
es_CL
Author
dc.contributor.author
Ramírez Cabrera, Héctor
es_CL
Admission date
dc.date.accessioned
2014-01-09T15:02:45Z
Available date
dc.date.available
2014-01-09T15:02:45Z
Publication date
dc.date.issued
2013
Cita de ítem
dc.identifier.citation
J Optim Theory Appl (2013) 159:741–768
en_US
Identifier
dc.identifier.other
DOI 10.1007/s10957-012-0116-4
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/126113
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
This paper is devoted to the study of the symmetric cone linear complementarity
problem (SCLCP). Specifically, our aim is to characterize the class of linear
transformations for which the SCLCP has always a nonempty and bounded solution
set in terms of larger classes. For this, we introduce a couple of new classes of linear
transformations in this SCLCP context. Then, we study them for concrete particular
instances (such as second-order and semidefinite linear complementarity problems)
and for specific examples (Lyapunov, Stein functions, among others). This naturally
permits to establish coercive and noncoercive existence results for SCLCPs.