Log-Gamma Polymer Free Energy Fluctuations via a Fredholm Determinant Identity
Author
dc.contributor.author
Borodin, Alexei
Author
dc.contributor.author
Corwin, Ivan
es_CL
Author
dc.contributor.author
Remenik Zisis, Daniel
es_CL
Admission date
dc.date.accessioned
2014-01-09T15:25:00Z
Available date
dc.date.available
2014-01-09T15:25:00Z
Publication date
dc.date.issued
2013
Cita de ítem
dc.identifier.citation
Commun. Math. Phys. 324, 215–232 (2013)
en_US
Identifier
dc.identifier.other
DOI 10.1007/s00220-013-1750-x
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/126121
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
We prove that under n1/3 scaling, the limiting distribution as n → ∞of
the free energy of Seppäläinen’s log-Gamma discrete directed polymer is GUE Tracy-
Widom. The main technical innovation we provide is a general identity between a class
of n-fold contour integrals and a class of Fredholm determinants. Applying this identity
to the integral formula proved in Corwin et al. (Tropical combinatorics and Whittaker
functions. http://arxiv.org/abs/1110.3489v3 [math.PR], 2012) for the Laplace transform
of the log-Gamma polymer partition function, we arrive at a Fredholm determinant which
lends itself to asymptotic analysis (and thus yields the free energy limit theorem). The
Fredholm determinant was anticipated in Borodin and Corwin (Macdonald processes.
http://arxiv.org/abs/1111.4408v3 [math.PR], 2012) via the formalism ofMacdonald processes
yet its rigorous proof was so far lacking because of the nontriviality of certain
decay estimates required by that approach.