Show simple item record

Authordc.contributor.authorStein, Maya 
Authordc.contributor.authorZamora, José es_CL
Admission datedc.date.accessioned2014-01-24T18:30:58Z
Available datedc.date.available2014-01-24T18:30:58Z
Publication datedc.date.issued2013
Cita de ítemdc.identifier.citationSIAM J. DISCRETE MATH.en_US
Identifierdc.identifier.otherDOI. 10.1137/100819722
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/126282
General notedc.descriptionArtículo de publicación ISI.en_US
Abstractdc.description.abstractIt is well known that in finite graphs, large complete minors/topological minors can be forced by assuming a large average degree. Our aim is to extend this fact to infinite graphs. For this, we generalize the notion of the relative end degree, which had been previously introduced by the first author for locally finite graphs, and show that large minimum relative degree at the ends and large minimum degree at the vertices imply the existence of large complete (topological) minors in infinite graphs with countably many endsen_US
Patrocinadordc.description.sponsorshipFondecyt granten_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherSociety for Industrial and Applied Mathematicsen_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectinfinite graph, minoren_US
Títulodc.titleFORCING LARGE COMPLETE (TOPOLOGICAL) MINORS IN INFINITE GRAPHS∗en_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile