Show simple item record

Authordc.contributor.authorDávila Bonczos, Juan 
Authordc.contributor.authorPino Manresa, Manuel del es_CL
Authordc.contributor.authorWei, Juncheng es_CL
Admission datedc.date.accessioned2014-01-27T13:34:10Z
Available datedc.date.available2014-01-27T13:34:10Z
Publication datedc.date.issued2014-01-15
Cita de ítemdc.identifier.citationJournal of Differential Equations Volume 256, Issue 2, 15 January 2014, Pages 858–892en_US
Identifierdc.identifier.otherdoi: 10.1016/j.jde.2013.10.006
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/126285
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractWe consider the semilinear equation epsilon(2s)(-Delta)(s)u + V(x)u - u(p) = 0, u > 0, u is an element of H-2s(R-N) where 0 < s < 1, 1 < p < N+2s/N-2s, V (x) is a sufficiently smooth potential with inf(R) V(x) > 0, and epsilon > 0 is a small number. Letting w(lambda) be the radial ground state of (-Delta)(s) w(lambda) + lambda w(lambda) - w(lambda)(p) = 0 in H-2s (R-N), we build solutions of the form u epsilon(x) similar to (k)Sigma(i=1)w lambda(i)((x - xi(epsilon)(i))/epsilon), where lambda(i) = V(xi(epsilon)(i)) and the xi(epsilon)(i) approach suitable critical points of V. Via a Lyapunov-Schmidt variational reduction, we recover various existence results already known for the case s = 1. In particular such a solution exists around k nondegenerate critical points of V. For s = 1 this corresponds to the classical results by Floer and Weinstein [13] and Oh [24,25]. (C) 2013 Elsevier Inc. All rights reserved.en_US
Lenguagedc.language.isoen_USen_US
Publisherdc.publisherElsevier
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Títulodc.titleConcentrating standing waves for the fractional nonlinear Schrodinger equationen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile