Andean structural control on interseismic coupling in the North Chile subduction zone
Author
dc.contributor.author
Béjar - Pizarro, Marta
Author
dc.contributor.author
Socquet, Anne
es_CL
Author
dc.contributor.author
Armijo, Rolando
es_CL
Author
dc.contributor.author
Carrizo, Daniel
es_CL
Author
dc.contributor.author
Genrich, Jeff
es_CL
Author
dc.contributor.author
Simons, Mark
es_CL
Admission date
dc.date.accessioned
2014-01-29T20:04:53Z
Available date
dc.date.available
2014-01-29T20:04:53Z
Publication date
dc.date.issued
2013-04-28
Cita de ítem
dc.identifier.citation
Nature Geoscience. 2013 (6)
en_US
Identifier
dc.identifier.other
doi: 10.1038/NGEO1802 Andean
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/126331
General note
dc.description
Artículo de publicación ISI.
en_US
Abstract
dc.description.abstract
Segmentation can influence the extent of earthquake rupture and event magnitude(1): large megathrust earthquakes result from total rupture of relatively continuous segments of the subduction interface(2-5). Segmentation is attributed to variations in the frictional properties of the seismogenic zone or to topographic features on the down-going plate(6-9). Structures in the overriding plate may also influence segmentation(10-13), but their importance has been dismissed. Here, we investigate the links between interface segmentation at the North Chile seismic gap(14) and a crustal-scale fault structure in the overriding plate that forms a coastal scarp of about 1 km in height(10,15). We use satellite interferometric synthetic aperture radar (InSAR) and Global Positioning System (GPS) data to measure interseismic surface deformation between 2003 and 2009 and compare the deformation with rupture extent during well-documented earthquakes(5,16-18). From these data we infer the degree of coupling and segmentation at depth. We find that along a 500-km-long segment, the base of the strongly coupled seismogenic zone correlates with the line of the surface coastal scarp and follows the outline of the Mejillones Peninsula. This correlation implies that large-scale structures in the overriding plate can influence the frictional properties of the seismogenic zone at depth. We therefore suggest that the occurrence of megathrust earthquakes in northern Chile is controlled by the surface structures that build Andean topography.
en_US
Patrocinador
dc.description.sponsorship
French National
Research Agency (ANR-05-CATT-014, ANR-06-CATT-010-01), CNRS/INSU PNTS
project, BQR IPGP and the LABEX UnivEarthS (Sorbonne Paris Cité, IPGP).
Development and analysis of the CAnTO GPS network was partly supported
by the Gordon and Betty Moore Foundation.