Show simple item record

Authordc.contributor.authorCorrea Hidalgo, Maximiliano 
Authordc.contributor.authorGajardo, P. es_CL
Authordc.contributor.authorThibault, Lionel es_CL
Authordc.contributor.authorZagrodny, D. es_CL
Admission datedc.date.accessioned2014-01-31T15:39:32Z
Available datedc.date.available2014-01-31T15:39:32Z
Publication datedc.date.issued2013
Cita de ítemdc.identifier.citationSIAM J. OPTIM. Vol. 23, No. 2, pp. 1154–1166en_US
Identifierdc.identifier.otherDOI. 10.1137/120875934
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/126358
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractFor a boundedly generated drop [a,E] (a property which holds, for instance, whenever E is bounded), where a belongs to a real Banach space X and E ⊂ X is a nonempty convex set, we show that for every lower semicontinuous function h : X −→ R ∪ {+∞} that satisfies supδ>0 infx∈E+δBX h(x) > h(a) (BX being the unitary open ball in X), there exists ¯x ∈ [a,E] such that h(a) ≥ h(¯x) and ¯x is a strict minimizer of h on the drop [¯x,E].en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherSociety for Industrial and Applied Mathematicsen_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectvariational principleen_US
Títulodc.titleExistence of minimizers on dropsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile