Show simple item record

Authordc.contributor.authorMétois, M. 
Authordc.contributor.authorSocquet, Anne es_CL
Authordc.contributor.authorVigny, C. es_CL
Authordc.contributor.authorCarrizo, D. es_CL
Authordc.contributor.authorPeyrat, Sophie es_CL
Authordc.contributor.authorDelorme, A. es_CL
Authordc.contributor.authorMaureira, E. es_CL
Authordc.contributor.authorValderas Bermejo, M. C. es_CL
Authordc.contributor.authorOrtega, I. es_CL
Admission datedc.date.accessioned2014-03-13T14:28:55Z
Available datedc.date.available2014-03-13T14:28:55Z
Publication datedc.date.issued2013
Cita de ítemdc.identifier.citationGeophys. J. Int. (2013) 194, 1283–1294en_US
Identifierdc.identifier.otherdoi: 10.1093/gji/ggt183
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/126448
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractNo major earthquake occurred in North Chile since the 1877Mw 8.6 subduction earthquake that produced a huge tsunami. However, geodetic measurements conducted over the last decade in this area show that the upper plate is actually deforming, which reveals some degree of locking on the subduction interface. This accumulation of elastic deformation is likely to be released in a future earthquake. Because of the long elapsed time since 1877 and the rapid accumulation of deformation (thought to be 6–7 cm yr−1), many consider this area is a mature seismic gap where a major earthquake is due and seismic hazard is high. We present a new Global Positioning System (GPS) velocity field, acquired between 2008 and 2012, that describes in some detail the interseismic deformation between 18◦S and 24◦S. We invert for coupling distribution on the Nazca-South America subduction interface using elastic modelling. Our measurements require that, at these latitudes, 10 to 12mmyr−1 (i.e. 15 per cent of the whole convergence rate) are accommodated by the clockwise rotation of an Andean block bounded to the East by the subandean fold-and-thrust belt. This reduces the accumulation rate on the subduction interface to 56mmyr−1 in this area. Coupling variations on the subduction interface both along-strike and along-dip are described. We find that the North Chile seismic gap is segmented in at least two highly locked segments bounded by narrow areas of weak coupling. This coupling segmentation is consistent with our knowledge of the historical ruptures and of the instrumental seismicity of the region. Intersegment zones (Iquique, Mejillones) correlate with high background seismic rate and local tectonic complexities on the upper or downgoing plates. The rupture of either the Paranal or the Loa segment alone could easily produce a Mw 8.0–8.3 rupture, and we propose that the Loa segment (from 22.5◦S to 20.8◦S) may be the one that ruptured in 1877.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherOxford University Press on behalf of The Royal Astronomical Societyen_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectSatellite geodesyen_US
Títulodc.titleRevisiting the North Chile seismic gap segmentation using GPS-derived interseismic couplingen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile