Mostrar el registro sencillo del ítem

Autordc.contributor.authorPeters, Georg 
Autordc.contributor.authorCrespo, Fernando es_CL
Autordc.contributor.authorLingras, Pawan es_CL
Autordc.contributor.authorWeber, Richard es_CL
Fecha ingresodc.date.accessioned2014-03-14T18:39:58Z
Fecha disponibledc.date.available2014-03-14T18:39:58Z
Fecha de publicacióndc.date.issued2013
Cita de ítemdc.identifier.citationInternational Journal of Approximate Reasoning 54 (2013) 307–322en_US
Identificadordc.identifier.otherdoi 10.1016/j.ijar.2012.10.003
Identificadordc.identifier.urihttps://repositorio.uchile.cl/handle/2250/126463
Nota generaldc.descriptionArtículo de publicación ISIen_US
Resumendc.description.abstractClustering is one of the most widely used approaches in data mining with real life applications in virtually any domain. The huge interest in clustering has led to a possibly three-digit number of algorithms with the k-means family probably the most widely used group of methods. Besides classic bivalent approaches, clustering algorithms belonging to the domain of soft computing have been proposed and successfully applied in the past four decades. Bezdek’s fuzzy c-means is a prominent example for such soft computing cluster algorithms with many effective real life applications. More recently, Lingras and West enriched this area by introducing rough k-means. In this article we compare k-means to fuzzy c-means and rough k-means as important representatives of soft clustering. On the basis of this comparison, we then survey important extensions and derivatives of these algorithms; our particular interest here is on hybrid clustering, merging fuzzy and rough concepts. We also give some examples where k-means, rough k-means, and fuzzy c-means have been used in studies.en_US
Idiomadc.language.isoenen_US
Publicadordc.publisherElsevieren_US
Tipo de licenciadc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link a Licenciadc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Palabras clavesdc.subjectk-Meansen_US
Títulodc.titleSoft clustering - fuzzy and rough approaches and their extensions and derivativesen_US
Tipo de documentodc.typeArtículo de revista


Descargar archivo

Icon

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivs 3.0 Chile
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivs 3.0 Chile